2ndQuadrant is now part of EDB

Bringing together some of the world's top PostgreSQL experts.

2ndQuadrant | PostgreSQL
Mission Critical Databases
  • Contact us
  • EN
    • FR
    • IT
    • ES
    • DE
    • PT
  • Support & Services
  • Products
  • Downloads
    • Installers
      • Postgres Installer
      • 2UDA – Unified Data Analytics
    • Whitepapers
      • Business Case for PostgreSQL Support
      • Security Best Practices for PostgreSQL
    • Case Studies
      • Performance Tuning
        • BenchPrep
        • tastyworks
      • Distributed Clusters
        • ClickUp
        • European Space Agency (ESA)
        • Telefónica del Sur
        • Animal Logic
      • Database Administration
        • Agilis Systems
      • Professional Training
        • Met Office
        • London & Partners
      • Database Upgrades
        • Alfred Wegener Institute (AWI)
      • Database Migration
        • International Game Technology (IGT)
        • Healthcare Software Solutions (HSS)
        • Navionics
  • Postgres Learning Center
    • Webinars
      • Upcoming Webinars
      • Webinar Library
    • Whitepapers
      • Business Case for PostgreSQL Support
      • Security Best Practices for PostgreSQL
    • Blog
    • Training
      • Course Catalogue
    • Case Studies
      • Performance Tuning
        • BenchPrep
        • tastyworks
      • Distributed Clusters
        • ClickUp
        • European Space Agency (ESA)
        • Telefónica del Sur
        • Animal Logic
      • Database Administration
        • Agilis Systems
      • Professional Training
        • Met Office
        • London & Partners
      • Database Upgrades
        • Alfred Wegener Institute (AWI)
      • Database Migration
        • International Game Technology (IGT)
        • Healthcare Software Solutions (HSS)
        • Navionics
    • Books
      • PostgreSQL 11 Administration Cookbook
      • PostgreSQL 10 Administration Cookbook
      • PostgreSQL High Availability Cookbook – 2nd Edition
      • PostgreSQL 9 Administration Cookbook – 3rd Edition
      • PostgreSQL Server Programming Cookbook – 2nd Edition
      • PostgreSQL 9 Cookbook – Chinese Edition
    • Videos
    • Events
    • PostgreSQL
      • PostgreSQL – History
      • Who uses PostgreSQL?
      • PostgreSQL FAQ
      • PostgreSQL vs MySQL
      • The Business Case for PostgreSQL
      • Security Information
      • Documentation
  • About Us
    • About 2ndQuadrant
    • 2ndQuadrant’s Passion for PostgreSQL
    • News
    • Careers
    • Team Profile
  • Blog
  • Menu Menu
You are here: Home1 / Blog2 / Mark's PlanetPostgreSQL3 / Loading Tables and Creating B-tree and Block Range Indexes
Mark Wong

Loading Tables and Creating B-tree and Block Range Indexes

October 3, 2014/2 Comments/in Mark's PlanetPostgreSQL /by Mark Wong

I have been looking at the new Block Range Indexes (BRIN) being developed for PostgreSQL 9.5. BRIN indexes are designed to provide similar benefits to partitioning, especially for large tables, just without the need to declare partitions. That sounds pretty good but let’s look in greater detail to see if it lives up to the hype.

How large? Here’s one data point. Using the TPC Benchmark(TM) H provided dbgen we created data for the lineitem table at the 10GB scale factor, which results in a 7.2GB text file.

We’re going to compare a couple of basic tasks. The first look will be at the impact of inserting data into a table using the COPY command. We will do a simple experiment of creating a table without any indexes or constraints on it and time how long it takes to load the lineitem data. Then repeat with a B-tree index on one column. And finally repeat again with a BRIN index instead of a B-tree index on the same column.

axle-load-testThe above bar plot shows the average times over five measurements. Our baseline of loading the lineitem table without any indexes averaged 5.1 minutes. Once a B-tree index was added to the i_shipdate DATE column, the average load time increased to 9.4 minutes, or by 85%. When the B-three index was replaced by a BRIN index, the load time only increased to 5.6 minutes, or by 11%.

The next experiment is to average how long it takes to create a B-tree index on a table that is already populated with data. Then repeat that with a BRIN index. This will be done on the same i_shipdate DATE column and repeated for a total of five measurements each.

axle-index-create-test

 

 

The B-tree index took 95 seconds to build, where the BRIN index 18 seconds to build, an 80% improvement.

That’s very encouraging. The overhead to loading data into a table from a single BRIN index is only 11%, and reduced the total load time by 40% when compared to having a B-tree index. And creating a new BRIN index takes only 20% of the time that a new B-tree index would take. We will have more experiments lined up to see where else BRIN indexes may or may not benefit us.

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°318633 – the AXLE project – http://www.axleproject.eu

Tags: BRIN, performance, PostgreSQL
Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
2 replies
  1. Arthur
    Arthur says:
    October 9, 2014 at 8:14 pm

    Looking forward to see some OLTP/OLAP read benchmarks.

    Reply

Trackbacks & Pingbacks

  1. Index Overhead on a Growing Table | 2ndQuadrant says:
    October 10, 2014 at 12:35 am

    […] Loading Tables and Creating B-tree and Block Range Indexes → […]

    Reply

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Get in touch with us!

Recent Posts

  • Random Data December 3, 2020
  • Webinar: COMMIT Without Fear – The Beauty of CAMO [Follow Up] November 13, 2020
  • Full-text search since PostgreSQL 8.3 November 5, 2020
  • Random numbers November 3, 2020
  • Webinar: Best Practices for Bulk Data Loading in PostgreSQL [Follow Up] November 2, 2020

Featured External Blogs

Tomas Vondra's Blog

Our Bloggers

  • Simon Riggs
  • Alvaro Herrera
  • Andrew Dunstan
  • Craig Ringer
  • Francesco Canovai
  • Gabriele Bartolini
  • Giulio Calacoci
  • Ian Barwick
  • Marco Nenciarini
  • Mark Wong
  • Pavan Deolasee
  • Petr Jelinek
  • Shaun Thomas
  • Tomas Vondra
  • Umair Shahid

PostgreSQL Cloud

2QLovesPG 2UDA 9.6 backup Barman BDR Business Continuity community conference database DBA development devops disaster recovery greenplum Hot Standby JSON JSONB logical replication monitoring OmniDB open source Orange performance PG12 pgbarman pglogical PG Phriday postgres Postgres-BDR postgres-xl PostgreSQL PostgreSQL 9.6 PostgreSQL10 PostgreSQL11 PostgreSQL 11 PostgreSQL 11 New Features postgresql repmgr Recovery replication security sql wal webinar webinars

Support & Services

24/7 Production Support

Developer Support

Remote DBA for PostgreSQL

PostgreSQL Database Monitoring

PostgreSQL Health Check

PostgreSQL Performance Tuning

Database Security Audit

Upgrade PostgreSQL

PostgreSQL Migration Assessment

Migrate from Oracle to PostgreSQL

Products

HA Postgres Clusters

Postgres-BDR®

2ndQPostgres

pglogical

repmgr

Barman

Postgres Cloud Manager

SQL Firewall

Postgres-XL

OmniDB

Postgres Installer

2UDA

Postgres Learning Center

Introducing Postgres

Blog

Webinars

Books

Videos

Training

Case Studies

Events

About Us

About 2ndQuadrant

What does 2ndQuadrant Mean?

News

Careers 

Team Profile

© 2ndQuadrant Ltd. All rights reserved. | Privacy Policy
  • Twitter
  • LinkedIn
  • Facebook
  • Youtube
  • Mail
Compiling and debugging PostgreSQL’s PgJDBC under Eclipse Index Overhead on a Growing Table
Scroll to top
×