

Simon Riggs CTO, 2ndQuadrant

17 Oct 2019

BDR History

Largest single contribution project to PostgreSQL

- 2009 Logical replication design
- 2012 BDR prototype

• 2014 BDR1 in production

 2012+ Many BDR features contributed to PostgreSQL

BDR Editions and Versions

PostgreSQL11, with Advanced Features

- BDR 3.6.9 current version
 - BDR-SE Standard Edition
 - All features in Extension
 - BDR-EE Enterprise Edition
 - Various advanced features
- BDR 3.7 available October 2019

BDR3 Fundamentals

MultiMaster Database for PostgreSQL

- Multiple Master nodes
- Fully automatic DML replication
- Fully automatic **DDL** replication
- Replication options
 - Efficient (Async)
 - Eager Replication

BDR "Group"

Building Blocks for Advanced Clusters

- A small cluster of 2-3 nodes is called a **Group** (or Group), multiple groups form the building block for advanced clusters
 - Integrated backup
 - Integrated routing for fast switchover to alternate nodes
 - Repair lost nodes

BDR AlwaysOn

Very High Availability Clustering

- Active-Active
 - One Group on each Site
 - 2-3 DB nodes per Group

 One main node, switching to other nodes should node, site or network failures occur

BDR Worldwide

- Multiple Sites
 - Up to 32 Sites
 - No distance Limitation

- Option to store data only on local site
- Suitable for IoT, Monitoring and TimeSeries

BDR AutoScale

Massively Parallel Database & Elastic Scaling

- AutoScale offers Sharding solution
 - Elastically scalable cluster of 2+ Groups
 - Optional Read/Write Coordinator Groups(s)
 - Optional Disaster Recovery site

BDR Use Cases

Advanced Clustering & Scaling

- BDR Worldwide
 - Geographically Remote Databases
- BDR AlwaysOn (3.6+)

- Very High Availability PostgreSQL
- BDR AutoScale (3.7+)

PostgreSQL MPP databases using BDR sharding

BDR Fast Switchover

- Execute on node1 until failure, fast failover node2
- Compare 30-90s for single master failover Against <100ms for AlwaysOn failover

BDR Data Loss Protection

- Commit At Most Once ensures that any in-flight transactions with unknown state are fully resolved
 - No transactions are duplicated or skipped
 - Works for Session and Transaction mode pooling
- Data in other sites for Disaster Recovery protection can be read and used for reporting/additional uses, since they are active they can use temp tables etc..

Rolling System Upgrades

- Rolling upgrades start with least used node and roll across all nodes slowly
- System Upgrades can upgrade BDR and/or main PostgreSQL releases
 - e.g. PG10 to PG11
 E.g. BDR3.5.5 to BDR3.6.2
 - Nodes re-negotiate their protocols to ensure compatibility

Rolling Database Schema Upgrades

- Rolling upgrades start with least used node and roll across all nodes slowly, managed under DevOps control
- Update application's database schema
 - BDR tolerates mismatched schemas such as additional/missing columns, different datatypes, differing indexes
 - Application stays online during upgrade
 - Bad situations can be backed out

BDR Performance

Real-World Production Performance

- Massive partitioning performance gains
- Efficient logical replication
- Streaming of large transactions
- Efficient distributed sequences
- Choice of options for selecting appropriate robustness and performance trade-offs
- Replication performance analysis,
 Lock wait times and I/O timing

Writing to Postgres-BDR

Distributed database options

- Post-Commit Synchronization Resolve issues after COMMIT
 - Row-level Conflict Handling by default
 - Column-level Conflict Handling option
 - Conflict-Free Custom Datatypes (CRDTs)
 - Logging and resolution of issues, Conflict Triggers
- Eventual Consistency
 - Fast: Low latency, suitable for wide distribution

Writing to Postgres-BDR

Distributed database options

- Pre-Commit Synchronization
 Eager Replication avoids conflicts
 - All Nodes
 - (Majority nodes: roadmap feature)
- Avoids issues at COMMIT
 - Additional latency not desirable in many cases
 - Some transaction aborts in conflict cases
 - Suitable for high value data/hi latency tolerance

BDR Application Requirements

Advisory, not Mandatory

- Unique identifiers for rows (INSERTs, UPDATEs)
- Don't change identifiers (UPDATEs)
- Don't reuse identifiers (quickly) (DELETEs)
- If you don't follow these you may get conflicts/issues
- BDR Assessment offers tools to identify these
- BDR LiveCompare offers data verification/correction to assure production systems

Time5

Time4

Time3

Time2

Time1

AutoScale

Shard data for OLTP and BI

- OLTP on Coordinator group
- Bl on array of Shard Groups
- We can add optional Read Coordinator nodes
- Easily upgrade array of groups, without moving existing data

Write Coordinators - AlwaysOn

Time5

Time4

Time3

Time2

Time1

AutoScale Read/Write

Data Node only configuration

- Coordinators have Foreign Tables to BDR Server
- BDR performs Data Routing

 All query access happens via Postgres FDW mechanisms

Time1

AutoScale HA

 Each Group has multiple nodes with redundant copies

 BDR performs Data Routing dynamically in case of

down nodes

Built-In HA

Time1

AutoScale Large Query

Data Node only configuration

 Multi-partition queries access multiple Foreign Tables

Parallel query occurs

because access spread across multiple nodes

Time3

Time2

Time1

Time0

Example Query - SSB Q3.2

SELECT c city, s city, d year, sum(lo revenue) as revenue FROM lineorder JOIN customer ON lo custkey = c custkey JOIN supplier ON lo_suppkey = s_suppkey JOIN date ON lo orderdate = d datekey WHERE c nation = 'UNITED STATES' and s nation = 'UNITED STATES' and d year >= 1992 and d year <= 1997 GROUP BY c city, s city, d year ORDER BY d year asc, revenue desc;

AutoScale Join Query

- Join queries access multiple Foreign Tables
- Join is pushed down to shards

 Star Schema joins only, covers most performant case

Time2

Ref Data

Dimension

AutoScale Supported Data Models

Snowflake Schema

- Multiple Fact Tables
 - Range Partitioned only using matching partitions
 - 1 to Many Relationships between Fact tables
 - Spliced across shard groups
- Multiple Dimension tables
 - Copies on all groups
 - Normalized

BDR Multi-node Query

Consistency and Performance

- Timestamp-based consistency (ClockSI)
- Allow consistent queries across nodes even with real-time replication of data
- Data verification between nodes
- Multi-node parallel query (MPP) across
 - Local clusters with remote DR nodes
 - Geo-distributed clusters

BDR3 Enterprise Edition (BDR-EE)

PostgreSQL, with Advanced Features

- Very High Availability
- Maximum Data Protection
- Rolling System Upgrades
- Rolling Application Upgrades
- AutoPartition
- AutoScale
- Performance & Security
- Robustness from Production Experience

Postgres-BDR Plugin for OmniDB Visual Administration

Cloud Native Integration Working together in the Cloud

- 2ndQuadrant is a Silver Member of the CNCF
- Kubernetes operators for BDR and PostgreSQL
- OpenTracing built into BDR3.7 for end-end observability
- Prometheus storage plugin for BDR AutoScale
- Fluentd integration via syslog input
- TPAexec Cloud/On-Premise Orchestration
- Postgres Cloud Manager for Pure/Hybrid Own-Management

2ndQuadrant PostgreSQL Solutions

Website https://www.2ndquadrant.com/

Blog https://blog.2ndquadrant.com/

Email info@2ndQuadrant.com